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A nonlinear, autonomous system of order ( 2k + 2 ) is perturbed by application 
of damping which is analytic and sufficiently small in norm. The system we con- 
sider resembles a Liapunov system [l], in a different sense however to that given 
in p]. The perturbed system is transformed in such a manner that the unperturbed 
system transforms into a quasilinear, nonautonomous system of order 2k [33. If 
the general solution to the unperturbed system is known, then the process of in- 

tegration of the system of variational equations can be reduced, according to 

Poincare [4], to quadratures and this is illustrated with the example of a plane 

spring pendulum. 

1. Trrnaformrtion of thr equation: of motion, Consider a class of 
Liapunov systems (see Cl], Sect. 33) with damping, described by the following system 
of equations: 

@u/d+ + u - U (u, u , VI, . . . . vL, VI , . . . . vL ) = - 2ePo (u . VI , . . . . vk’) (1.1) 

d=v,/dz? + UxlIl~ + . . . + axkVk - v, (U, U , VI, . . . . “p 2’1 , . ..I vk ) = 
=-22eFX(u, VI ,..., vr) (e>O,x=l, . . . . k) 

Here a dot denotes a derivative with respect to r ; a = axi (x,j = l,...,k) are real con- 

stants; u, VI ,..., vk, Fo, F, ,..., Fkare real analytic f:xnctions; the expansions for Fo, FI, 
. . . ,Fk begin with the terms of at least first order and those for U, V,,. . . , Vk with terms 
of at least second order. We shall assume that the unperturbed system (1.1). i.e. (1.1) 
in which a = 0, admits a first integral which must be an analytic function of the variables 
u, u , t’l,..., “k, v1 T-.., uk and have the form [l] 

H = u’s + ua + W (VI, . . . . vk, VI , . . . . vl( ) + 

+ s# (u, u , v1, *..I vk, vl , ..*I vlc ) = P (P > 0) (1.2) 

where W is a quadratic form and Sa is a set of terms of order not lower than the third. 
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We shall assume that the work done by the selected forces of resistance Fe, &...,Fk 
over any possible displacement, coinciding in the present case with one of the actual 
displacements, is negative. In the simplest nonlinear case when Fj = F(aj) (i = 0,1, 

...A tro’ Z u) this condition means that aJ’(a) > Cl (a # 0). In the linear case it means 
that the dissipation is complete. 

Making the Liapunov substitution 

lb’=PiXh%iJ, u=psin*, ey = PZx 

OI(’ = P’k+x (p>,O; x-=4*..., k) 

under the condition 

1 -$[U(psind, pcos6, pz) - 28Po (p CDS 6, pZ@))] sin 6 > 0 (i-3) 

we can reduce the system (1.1) and the first integral of the unperturbed system (1.2) to 
the form dP@ = A (U 00s 6 - ZeFo cos #) 

dz,/d# = A (z~+~ - p--Q7 cos 6 + 2sp-4 z,Fo co9 43) 0.4) 
dz,+,/d6 = A (-a,,zl - a.. - aXlr zk - ~-~z~+~U cos6 + 

+ P-‘v, + 28p-1zk+x PO cos6 - 2ep-IF,) (X = 1, . . . . k) 

(A = (i - p-W sin 6 + 2Rp-lF0 sin 6)-i) 
P* [* + w (2) + ps (S, PI c)] = p* (S = P--SSa) (1 5b 

Here 2 and z@ are vectors whose components are z*, . . . . zk and zir+, . . . . , zzkf, respea - 

ively. 
The unperturbed system (1.4), i.e. with e = 0, can be reduced to a quasilinear, non- 

autonomous system of the order 2k using the integral (1.5). Its solution can be found 
using the methods of small parameter for sufficiently small values of P > 0 in (1.5) 133. 

2, Complsto tyrtem of parametric rrtlrtionrl squrtione and its 
IQ1utlon* Let us write the system (1.4) in the vector form 

dx/dft = f (6, x; e) (2.1) 

where x is a VeCtOt whose components are Q, zlr...,Z& f is a VeCtOt function containing 
the right-hand sides of the system (1.4) and analytic in x and e in the domain of def- 

inition of (1.3). and the coefficients of the power series in P, +.*.,Zak are &t-periodic 

functions of @ . In the following we shall set 2k + 1 = n, assuming that R is any nat- 

ural number. 

Let us suppose that a solution x,(6) of the unperturbed system (2.1) is known, i.e. 
when 8 = 0 dxo/dft = f (6, xo; 0) (2.3) 

Using the Poicare theorem [43 we shall seek a solution of (2. l), for sufficiently small 

e>O I in the form 
x= 5 e”x, (+) (2.3) 

V==O 

Subtracting the identity (2.2) from (2.1) and using the Taylor expansion for a function 

of two variables, we obtain 

Equating the coefficients of like powers of a, we obtain the following sequence of vector 
differential equations (a complete system of parametric variational equations) 
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Here the subscript o indicates that the partial derivatives are taken at xa = x&and 
e = 0; a,, czar... are natural numbers and we have the matrix 

The consecutive terms in (2.4) must be treated as operators. e. g. 

gxlx2={&[(gj Xl]\X3 
If E appears in (2. I) linearly, i.e. if f(@, x; e) = g(6, x1 + sh 03% x1, then (2.4 1 
becomes 

dxl -- d6 - 2 ox4-h(& x0) 
( 1 0.5) 

z: X,,...X,” + 
a,+...+a,=m 
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Equations (2.4) and (2.5) are integrated directly term by term only in the scalar case. 
Poicare has shown [4] however that when the general integral of the unperturbed (i. e. 
with e = 0) equation (2.1) is known, then the process of integration of (2.4) and (2.5) 
which may be of any order,is reduced to quadratures. 

Indeed, let x0 = x0 (6, a) be the general integral of (2.1) with .a = 0, where a is an 
n-dimensional vector. Differentiating the identity (2.2) with respect to a we obtain 

This implies that ax, / aa is the fundamental matrix of each of the homogeneous systems 
of differential equations corresponding to (2.4) or (2.5). Then we can write the solution 
of the first of the systems (2.4) or (2.5) with zero initial conditions ~~(6~) = 0 in the 
form 8 

(2.6) 

Since the solution x, = x, (8; a) is a general one, ax, / da is a nonsingular matrix. 
For x,,, (m > 1) we obtain formulas analogous to (2.6),in which (af / ae),, appearing under 
the integral sign is replaced with the inhomogeneous part of the corresponding system 

(2.4) or (2.5). 

9, Example. Let us consider a plane spring pendulum of mass M on a weightless 
spring of length 1 in the unstressed state, obeying the Hooke’s Law, and of rigidity equal 
to c (see Fig. 1). Let z and y’ = 

0 

1 -I- h + y be the Cartesian coordinates of the mass 

m counted from the point 0 of suspension, L = mg / c 

denoting the static elongation of the spring. We choose 
the constant sum of the potential energy lT , the force 

of gravity and the elastic force of the spring in such 

a manner that it becomes zero at the position of static 

equilibrium. We then have 

Fig. 1. 

IT= - mgyf + [ v/23 + (I + h + y)“- lla - 

C 

-T??,T =$[(Jgi”+($,‘] 
Let us assume that the mass m is acted upon by an 

additional reaction force R proportional to velocity. 
We denote by 0 = I’e / m the angular frequency 
of the vertical oscillations of the mass on the spring 

and introduce the dimensionless time t = (tit as well as the coordinates u = y / 1 and 

v = z I 1. Then the equations of motion become 

g+ u-{(~f~$-U)[(1~7+P)2~V’]-L”-i}=-28~ (3.1) 

d’V T 
dz’+l+rv- v [(I + y + 24)” + q-“2 - &) = - 2E g 

I 
where y = h / 1 and e = r/d b (~m)-‘f* are dimensionless parameters and the expansions 
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of the expressions within the braces begin with the second order terms. 
When E = 0 we have the following energy integral: 

~_ -+(T3_11)c=p (3.2) 
The Liapunov substitut~oR 

dujdr = p co3 6, u = psi&, v = ,021, dv/dr = pzd (3.3) 

reduces the perturbed system (3.1) and the integral (3.2) of the unperturbed system, to 
the form (1.4) and (1.5) 

dp/dB = A ((I cos c) - 2&p cosz 6) 

dzlfd@ = :I (z- - zpu cm 6 + 2ez1 co+ 6) (3.4) 
da 
~=‘w-~(~+~)-~ Z1 - 53ife1U CO3 6 + p-‘Ey - 2822 Sin” &] 

A = (1- p-1 U sin 6 + E sin 26)-l 

u -_ -- ‘$$J$ + 0 (p9, 1’ -f I I;:;ll”t$ + 0 (PSI 

r 
P2 1-t i+T r 

51? + 212 -+ pS(6, p, Zl, zy) = p" 
1 

(3.5) 

where the condition (1,3),is presumed to hold, i.e. 

i -!- ‘/s (1 f ‘r)-’ WI’ sin 6 i_ E sin 213 f 0 (,S) > 0 (3 .st 

The un~rt~bed system (3.4) (i.e. with a = 0) admits the generating solution [3] 

p0(6; p, M, Nf = pK-“’ + 0 (pa), a”(% p, M, N) = L(6) + 0 (Ir) (3.7) 

zs” (6; n, M, N) = L’(a) + O(k) 

XK$+gZ;ilfs+N9, g=j,/z (g+-+j, L(6)=Mc03g@+Nsingfi 

x, _i zj), ~=~~~ 

This solution, as was shown in 131 is a general solution for all y except y = 113 (e = 
= I/2). Let us compute the elements of (2.6) 

ax0 
K-‘I’+. 0 (p) - g?,ll K+ I” + 0 (p?) - .g2NK-+ p + 0 (E”“) 

aa = ‘p (6) -t 0 w MS g6 4 0 (P) sin g@ + 0 (IL) 

9 m 4 0 w - g sin g @ + 0 W g em g@ + 0 Ccl) 

To compute the inverse matrix we shall simplify the result somewhat by setting q(S) = 
= q(S) s u. Then we have 

am 

i 1 

-1 
K”2 + 0 (p) g2K--‘L (8) p + 0 (pz) K-IL’ @) P + 0 (P2) 

aa = 0 (P) cm gfi + 0 (P) --g-l sin g6 + O(p) 

0 (CL) sin g6 + 0 (p) g-1 cos g6 + 0 (P) 

The vector (8E / a&),, where f is the vector of the right-hand sides of (3.4) and the sub- 
script o denotes the substitution of E = 0 and of the generating solution (3.7). is 

/ 
- q.Lir’J~ cos” 6 + 0 (p) 

2L (*) cos2 6 - L’ (S) sin 28 + 0 (p) 

- 2L’ (6) sin% 6 + g2L (6) sin 26 + O(u) i 
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Let us set in (2.6) 6, = 0. By (3.3) this means that at the initial instant ‘T = 0 we 
have u(0) = 0. Omitting the obvious calculations performed in accordance with (2.6) 
we shall write out the first two components of the vector x,(6; p, M, N) of the first co- 
rrection 

pi (6; P, 111, N) = - pK-“2 (6 + G sin 26) + 0 (pLB) 

+gi14sinzt3sinpfl-+ N siu 24 sin g6 - gN sin2 6 cos g6 + 0 (p) 

It remains to integrate the equation for 4 [3], and this gives 

6 = 0(r) = z + &sin% + 0 (u) + . . . 

Here the dots denote the second order terms in* P and E. Finally we obtain the solution 
of (3.1) for the case u(O) = 0 in the form 

u = (pO + sp,)sin6 + O(ea) 
v --_ poz1° + E(P*Zl’ + Pm”) + O(E2) 

The constants p (initial value of the energy (3.2)) M and N are found from the initial 
conditions z(O), z (0) and I/’ (0). The inequality (3.6) defines the bounds for E and the 
interval of variation of ‘t has the order of 0 (1 / E). 
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